

オマーンの代表的な発電所

Major Power Plants in Oman

目次	Index
1. スール発電所 (2,018MW、ガス)	1. Sur Power Plant (2,018 MW, Gas)
2. ソハール3発電所 NOMAC (1,741MW、ガス)	2. Sohar 3 Power Plant NOMAC (1,741 MW, Gas)
3. イブリー発電所 NOMAC (1,539MW、ガス)	3. Ibri Power Plant NOMAC (1,539 MW, Gas)
4. 1,021 MW ミラー太陽熱蒸気製造プラント	4. 1,021 MW Miraah Solar Thermal Steam Generation Plant
5. ルサイル発電所 (665MW、ガス)	5. Rusail Power Plant (665 MW, Gas)
6. ソハール・アルミニウム発電所 (1,000MW、ガス)	6. Sohar Aluminum Power Plant (1,000 MW, Gas)
7. ドファール風力発電所(50 MW)	7. Dhofar Wind Power Farm (50 MW)
8. SMN バルカー発電所(716 MW、ガス)	8. SMN Barka Power Plant (716 MW, Gas)

1. スール発電所 (2,018MW、ガス)

1. Sur Power Plant (2,018 MW, Gas)

Sur Power Plant (2,018 MW, Gas) (محلطة كهرباء صور)

1.1 概要	1.1 Summary
<ul style="list-style-type: none"> - タイプ: 複合サイクル・ガスタービン(CCGT) - 所在地: オマーン、シャルキーヤ北部 - 運転開始: 2014年12月 - 燃料: 天然ガス (ディーゼル燃料も使用可能) - 所有者: 丸紅、JERA、Nebras Power QPSC、Multitech 	<ul style="list-style-type: none"> - Type: Combined Cycle Gas Turbine (CCGT) - Location: Ash Sharqiyah North, Oman - Commissioned: December 2014 - Fuel: Natural gas (with diesel as backup) - Ownership: Marubeni, JERA, Nebras Power

- 売電先：オマーン電力・水調達会社(OPWP)	QPSC, Multitech - Offtaker:
--------------------------	--------------------------------

1.2 事業の詳細	1.2 Project Details
------------------	----------------------------

Unit name	Status	Fuel(s)	Capacity (MW)	Technology	CHP	Start year
1	Operating ¹	fossil gas: natural gas, fossil liquids: fuel oil	800	combined cycle	not found	2014
2	Operating	fossil gas: natural gas, fossil liquids: fuel oil	800	combined cycle	not found	2014
3	Operating	fossil gas: natural gas, fossil liquids: fuel oil	400	combined cycle	not found	2014

1.3 参考資料(Reference)
Sur Combined Cycle Power Plant Overview (https://www.power-technology.com/data-insights/power-plant-profile-sur-combined-cycle-power-plant-oman/)
Sur Independent Power Plant (https://www.gem.wiki/Sur_Independent_power_plant)
Sur Gas Thermal IPP Project (https://www.jera.co.jp/en/corporate/business/projects/sur)

2. ソハール 3 発電所 NOMAC (1,741MW、ガス)	2. Sohar 3 Power Plant NOMAC (1,741 MW, Gas)
---	---

محطة كهرباء صحار (3) Sohar 3 Power Plant (3)

2.1 概要	2.1 Summary
- タイプ: 複合サイクルガスタービン (CCGT)	- Type: Combined Cycle Gas Turbine (CCGT)
- 所在地: オマーン、ソハール	- Location: Oman, Sohar
- 運転開始: 2019 年 5 月	- Commissioned: May 2019
- 燃料: 天然ガス (燃料油も使用可能)	- Fuel: Natural gas (with fuel oil as backup)
- 出資比率: 三井物産 (50.1%)、ACWA Power (44.9%)、DIDIC (5%)	- Ownership: Mitsui (50.1%), ACWA Power (44.9%), DIDIC (5%)
- 売電先: オマーン電力・水調達会社(OPWP)	- Offtaker: Oman Power and Water Procurement (OPWP)
- 事業費: 9 億 8 千 3 百 米 ドル	- Project Cost: USD 983 M
- 事業会社: シナス発電会社 SAOC (「ソハール」)	- Project Company: Shinas Generating Company SAOC ("Sohar")

2.2 参考資料(Reference)

Sohar 3 IPP Overview

(<https://www.nomac.com/en/our-operations/nomac-globally/sohar-3-ipp/>)

Sohar 3 IPP ACWA Power

(<https://www.acwapower.com/en/projects/sohar-3-ipp/>)

Sohar III Combined Cycle Power Plant

(<https://www.power-technology.com/data-insights/power-plant-profile-sohar-iii-combined-cycle-power-plant-oman/>)

3. イブリー発電所 NOMAC (1,539MW、ガス)

3. Ibri Power Plant NOMAC (1,539 MW, Gas)

محطة عبري للطاقة (Ibri Power Plant (1,539 MW, Gas))

Gas Turbine Generator

3.1 概要

3.1 Summary

- タイプ: 複合サイクルガスタービン (CCGT)

- Type: Combined Cycle Gas Turbine (CCGT)

<ul style="list-style-type: none"> - 所在地: オマーン、イブリー - 運転開始: 2019 年第 2 四半期 - 燃料: 天然ガス (燃料油も使用可能) - 出資比率: 三井物産 (50.1%)、ACWA Power (44.9%)、DIDIC (5%) - 売電先: オマーン電力・水調達会社(OPWP) - 事業費: 9 億 8 千 2 百万米ドル - 推定投資額: 6 億 6 千万米ドル 	<ul style="list-style-type: none"> - Location: Ibri, Oman - Commissioned: Q2 2019 - Fuel: Natural gas (with fuel oil as backup) - Ownership: Mitsui (50.1%), ACWA Power (44.9%), DIDIC (5%) - Offtaker: Oman Power and Water Procurement (OPWP) - Project Cost: US\$ 982 M - Estimated Investment: US\$ 660 M
3.2 事業の詳細	3.2 Project details
<p>イブリー発電発電所(発電所)は、国道 21 号線 (ブライミー - イブリー) (عُبَرِي - Ibri) に隣接する 25.9 ヘクタールの土地に開発されています。発電の主燃料として天然ガスを使用し、予備的には燃料油も利用できます。</p> <p>この発電所には、イタリアの機械製造会社アンサルド GT26 クラスのガスタービン (正味発電容量 235MW) と蒸気タービン (同 284MW) 2 基が設置されます。また、ボイラーフォア 4 基も設置されます。</p>	<p>Ibri Power Plant (発電所) is being developed in an area of 25.9ha located adjacent to Route 21 (Buraimi - Ibri) highway. It will use natural gas as its primary fuel for electricity generation, with fuel oil as a backup option.</p> <p>This plant will be equipped with Italian machinery manufacturer Ansaldo GT26 class gas turbines, with a net generating capacity of 235MW each, and two steam turbines, with a capacity of 284MW each. The project will also include four boilers.</p>

3.3 参考資料(Reference)
Ibri IPP (https://www.nomac.com/en/our-operations/nomac-globally/ibri-ipp)
Ibri Independent Power Project (https://www.power-technology.com/projects/ibri-independent-power-project/)

4. 1,021 MW ミラー太陽熱蒸気製造 プラント	4. 1,021 MW Miraah Solar Thermal Steam Generation Plant
--	--

1,021 MW Miraah Solar Thermal Steam Generation Plant

لتوليد البخار 1,021 MW محطة ميرا للطاقة الشمسية الحرارية

Miraah facility generates 6,000t/day of steam for use at Amal Oil Field

4.1 概要

4.1 Summary

<ul style="list-style-type: none"> - タイプ: 太陽熱利用 - 所在地: オマーン、アマール油田(حقل أمل النفطي) - 運転開始: 2017年11月 - 技術: GlassPoint 社製密閉式トラフ - 所有者: オマーン石油開発公社(PDO) - 目的: 石油増進回収(EOR)のための蒸気生成 	<ul style="list-style-type: none"> - Type: Solar Thermal - Location: Amal oilfield (حقل أمل النفطي), Oman - Commissioned: November 2017 - Technology: GlassPoint Enclosed Trough - Ownership: Petroleum Development Oman (PDO) - Purpose: Generates steam for Enhanced oil recovery (EOR)
--	---

4.2 事業の詳細	4.2 Project details
<p>アラビア語で「鏡」を意味するミラー(مِرَاة)は、オマーン南部に位置する 1,021MW の太陽熱発電施設です。世界最大級の太陽熱蒸気製造施設の一つで、2018年2月に正式に開所しました。蒸気として生成される熱エネルギーは、アーマル油田(حقل أمل النفطي)の重質高粘度油を抽出するための熱増進回収 (EOR) に利用されます。</p>	<p>Translated as 'mirror' in Arabic, Miraah (مِرَاة) is a 1,021MW solar thermal facility located in South Oman. It is one of the world's biggest solar plants. This facility was officially inaugurated in February 2018. Thermal energy produced in steam form is used for thermal enhanced oil recovery (EOR) to extract heavy and viscous oil at Amal oilfield (حقل أمل النفطي).</p>
<p>ミラー太陽熱蒸気製造施設で使用されている技術は、GlassPoint Solar 社の密閉トラフ技術です。これは、大型の曲面鏡を用いて太陽光を水を入れたボイラーパイプに集光する集光型太陽光発電(CSP)技術です。</p> <p>このエネルギーは、貫流蒸気発生器(OTSG)で水を沸騰させ、蒸気を発生させます。この蒸気は、アーマル油田内の複数の蒸気注入井に供給されます。</p>	<p>Technology, used at Miraah Solar Thermal Steam Generation Plant, is GlassPoint Solar's enclosed trough technology. It is a concentrating solar power (CSP) technology that uses large, curved mirrors to focus sunlight on a boiler tube containing water.</p> <p>The harnessed energy boils water in Once-through steam generators (OTSG) to produce steam that is fed to multiple steam injector wells within Amal oilfield.</p>
<p>鏡は温室で囲まれており、風、砂塵、砂嵐から保護されています。温室には自動洗浄設備も備えられており、使用される水の大部分を再利用することができます。</p> <p>鏡は温室の天井から吊り下げられ、小型で安価な位置決めシステムとモーターによって制御され、</p>	<p>Mirrors are enclosed with a glasshouse, protecting them from wind, sand and dust storms. Each glasshouse is further equipped with automatic washing facilities, which are capable of recycling majority of water used.</p> <p>Mirrors are suspended from glasshouse ceiling and controlled by small, inexpensive positioning systems and motors, which has a fully automated</p>

コンピューターからの遠隔操作を可能にする完全自動制御システムを備えています。	control system that enables remote operations from a computer.
このプロジェクトサイトは約 3km ² (741 エーカー) の面積がありますが、そのうち太陽熱蒸気製造施設は 2km ² 未満です。	This project site covers an area of approximately 3km ² (741 acres), of which the solar plant occupies less than 2km ² .
太陽エネルギーは、1 日あたり 6,000 トンの蒸気を生成することで、年間約 5.6 兆英国熱量単位 (BTU) の天然ガスを節約します。このエネルギーは、209,000 人の住宅に電力を供給するのに十分な量であり、年間 30 万トンの二酸化炭素排出量を相殺することができます。	Solar energy saves approximately 5.6 trillion British thermal units (BTUs) of natural gas a year, by generating 6,000t of steam a day. This energy is sufficient to provide residential electricity to 209,000 people to enable to offset 300,000t of carbon dioxide emissions a year.

4.3 参考資料(Reference)

Miraah Solar Thermal Project

(<https://www.power-technology.com/projects/miraah-solar-thermal-project/>)

Miraah Overview (<https://www.glasspoint.com/projects/miraah>)

5. ルサイル発電所 (665 MW、ガス)

5. Rusail Power Plant (665 MW, Gas)

(محطة كهرباء الرسيل) Rusail Power Plant

5.1 概要

5.1 Summary

<ul style="list-style-type: none"> - タイプ： ガスタービン - 所在地： オマーン、マスカット - 運転開始： 1984 年 - 燃料： 天然ガス（ディーゼル燃料も使用可能） - 所有者： Engie Energy Services International、Mubadala Investment、Oman LNG - 売電先：オマーン電力・水調達会社(OPWP) 	<ul style="list-style-type: none"> - Type: Gas Turbine - Location: Muscat, Oman - Commissioned: 1984 - Fuel: Natural gas (with diesel as backup) - Ownership: Engie Energy Services International, Mubadala Investment, Oman LNG - Offtaker: Oman Power and Water Procurement (OPWP)
<p>アル＝ルサイル発電所は、オマーン国マスカットの西約 40km の工業地帯に位置する 665MW の発電所です。8 基のフレーム 9E 型ガスタービンで構成され、主に天然ガスを燃料とし、軽油でも燃料として稼働できます。この発電所は、オマーン国で民営化された最初の国営発電会社であり、現在は SMN パワーホールディング（SAOG）が所有しています。</p>	<p>Al-Rusail Power Plant is a 665 MW power plant located in an industrial area approximately 40 km west of Muscat, Oman. It consists of eight Frame 9E gas turbines that primarily run on natural gas with diesel oil as a backup fuel. The power plant was the first state-owned power generation company to be privatized in the Sultanate of Oman and is now owned by SMN Power Holding SAOG.</p>

5.2 事業の詳細	5.2 Project Details
ルサイル発電所（محطة كهرباء الرسيل）は、少なくとも 186 メガワット (MW) の稼働中の発電所です。	Rusail power plant (محطة كهرباء الرسيل) is an operating power station of at least 186-megawatts (MW) in Rusayl.
公称出力は 665MW ですが、8 基のガスタービン発電機の運転状況や保守状況に応じて、利用可能な出力はほとんどの場合 186MW 程度です。	Despite its nominal capacity of 665 MW, the currently available capacity is around 186 MW in most cases, depending on the operational status and maintenance conditions of its eight gas turbine generators.
現在、8 基のうち 2 基 (GT7 と GT8) のみが稼働しており、残りの 6 基は長期に休止し、保管状態にあるため、実際の出力に影響を与えています。	At present, only two of eight turbines (GT 7 and GT 8) are running, while the other six units remain mothballed, affecting its actual output.

5.3 八つのガスタービン発電機の各基毎の詳細	5.3 Unit-level details of 8 gas turbine generators
-------------------------	--

Unit	Status	Fuel(s)	Capacity	Technology	Start
1	Mothballed	natural gas, fuel oil	80 MW	gas turbine	1983

2	Mothballed	natural gas, fuel oil	80 MW	gas turbine	1984
3	Mothballed	natural gas, fuel oil	80 MW	gas turbine	1984
4	Mothballed	natural gas, fuel oil	80 MW	gas turbine	1987
5	Mothballed	natural gas, fuel oil	80 MW	gas turbine	1987
6	Mothballed	natural gas, fuel oil	80 MW	gas turbine]	1987
7	Operating	natural gas, fuel oil	93 MW	gas turbine	1997
8	Operating	natural gas, fuel oil	93 MW	gas turbine	2000

5.4 参考資料(Reference)

Al-Rusail Power Plant Overview

(https://www.gem.wiki/Rusail_power_plant)

Al-Rusail Power Plant

(<https://www.smnpower.com/al-rusail-plant.php>)

**6. ソハール・アルミニウム発電所
(1,000MW、ガス)**

**6. Sohar Aluminum Power Plant
(1,000 MW, Gas)**

Sohar Aluminium Power Plant

(<https://www.sohar-aluminium.com/Facilities>)

6.1 概要

6.1 Summary

<p>ソハール・アルミニウムは、オマーンに拠点を置くエネルギー投資会社(OQ)（旧称：オマーン石油会社）、アブダビ国営エネルギー会社(Taqa)、そして世界的な鉱業大手リオ・ティントの合弁会社です。ソハール・アルミニウムは、この事業における主要な貢献企業の一つです。この事業はGE Powerによって開発されました。</p>	<p>Sohar Aluminium is a joint venture between Oman-based Energy Investment Company (OQ) (formerly known as Oman Oil Company), Abu Dhabi National Energy Company (Taqa) and global mining giant Rio Tinto. Sohar Aluminium is one of the key industrial contributors. The project was developed by GE Power.</p>
<ul style="list-style-type: none"> - 所有権：アブダビ・ナショナル・エナジー(40%)、OQ SAOC(40%)、リオ・ティント(20%) - 用途：ソハール・アルミニウム製錬所への電力供給 	<ul style="list-style-type: none"> - Ownership: Abu Dhabi National Energy (40%), OQ SAOC (40%), Rio Tinto (20%) - Purpose: Supplies power to Sohar Aluminum smelter

6.2 事業の詳細	6.2 Project Details
<p>ソハール・アルミニウムは、2008年から最新鋭の1,000MW発電所(صحار المنيوم للطاقة)を稼働させています。この発電所は、排出量、運用コスト、環境への影響を抑え、地方自治体が定めた厳しい要件を満たす最高水準の効率性を実現することで優れています。</p>	<p>Sohar Aluminium has been operating its state-of-the-art 1,000 MW power plant (صحار المنيوم للطاقة) since 2008. This power plant excels by achieving highest levels of efficiency ensuring low emissions, operating costs, and environmental impact meeting the stringent requirements set out by the local authorities</p>
<ul style="list-style-type: none"> - タイプ：複合サイクル・ガスタービン(CCGT) - 所在地：オマーン、ソハール港 - 運転開始：2008年 - 燃料：天然ガス 	<ul style="list-style-type: none"> - Type: Combined Cycle Gas Turbine (CCGT) - Location: Sohar Port, Oman - Commissioned: 2008 - Fuel: Natural gas

6.3 二つのガスタービン発電機の各基毎の	6.3 Unit-level details of 2 gas turbine generators
-----------------------	--

Unit	Status	Fuel(s)	Capacity	Technology	CHP	Start year
1	Operating	fossil gas: natural gas	500 MW	combined cycle	not found	2008
2	Operating	fossil gas: natural gas	500 MW	combined cycle	not found	2008

CHP は Combined Heat and Power (熱電併給発電) の略称です。高効率で電気と熱エネルギーを生み出す技術です。	CHP is an abbreviation for Combined Heat and Power. It is a technology that produces electricity and thermal energy at high efficiencies.
--	---

6.4 補助発電所 (696 MW、ガス)	6.4 Auxiliary Power Plant (696 MW, Gas)
------------------------------	--

ソハール・アルミニウムは、2009 年に同社の敷地内に 4 基の GT13E2 ガスタービン設置しています。これら 4 基の GT13E2 ユニットは最大 696MW の発電能力を持ち、設置以来、ソハール・アルミニウムの製錬所に重要な電力を供給してきました。	Sohar Aluminium installed four GT13E2 gas turbines on its premises in 2009. These four GT13E2 units have a generation capacity of up to 696 MW and its electricity produced critical power output since they were first installed.
この発電所には、冷却水を供給するための海水ポンプ場と、製錬所やその他の施設に水を供給するための淡水化施設も備えています。	This plant also includes a seawater pumping station for delivering cooling water as well as a desalination station to supply water to the smelter and other facilities.

6.5 参考資料(Reference)
Sohar Aluminum Power Plant Overview (https://www.gem.wiki/Sohar_Aluminum_power_plant)
Sohar Aluminium Combined Cycle Power Plant (https://www.power-technology.com/marketdata/sohar-aluminium-combined-cycle-power-plant-oman/)
Sohar Aluminium and GE Sign 10 Year Power Services Contract in Sultanate of Oman (https://www.gevernova.com/news/press-releases/sohar-aluminium-and-ge-sign-10-year-power-services-contract-in-sultanate-of-oman)
Sohar Aluminium seals GE power services contract in Oman (https://www.zawya.com/en/business/energy/sohar-aluminium-seals-ge-power-services-contract-in-oman-gkrce21p)

7. ドファール風力発電所(50 MW)	7. Dhofar Wind Power Farm
7.1 概要	7.1 Summary

(مزرعة ظفار للرياح) Dhofar Wind Power Farm

<p>マスダールが、湾岸協力会議（GCC）地域初の大規模風力発電所を建設しました。この 50 メガワット（MW）事業は、オマーン国ドファール県（محافظة ظفار）に設けられ、2019 年 11 月に商業運転を開始されました。</p> <p>この事業は、アラブ首長国連邦とオマーンの強固な二国間関係の成果です。この風力発電所への資金提供は、UAE の主要な開発援助機関であるアブダビ開発基金（ADFD）が行います。</p>	<p>Masdar has delivered the first large-scale wind farm in Gulf Cooperation Council (GCC) region. 50-megawatt (MW) project was installed in Dhofar Governorate (محافظة ظفار), and commercial operation was achieved in November 2019. This project is a direct result of strong, bilateral ties between United Arab Emirates and Oman. Funding for this wind farm is provided by Abu Dhabi Fund for Development (ADFD), UAE's leading national entity for development aid.</p>
7.2 実現可能性調査	7.2 A Feasibility Study
<p>実現可能性調査により、ドファールにおける風力発電事業の適性が確認されました。この事業が建設されたトゥムライト高原（）は、平均風速が毎秒 7~8 メートルと、風力発電所にとって理想的な条件を備えています。</p>	<p>A feasibility study confirmed the suitability of a wind energy project in Dhofar. Thumrait plateau (هضبة ثمريت), where this project was constructed, provides ideal conditions for the wind farm, with average wind speeds of 7-8 metres per second.</p>
7.3 風力駆動タービン	7.3 Wind-driven Turbines
<p>この事業は、GE が開発した 13 基の風力タービンで構成され、各タービンの発電容量は 3.8MW です。</p> <p>これらのタービンは、GE の風力タービンの技術や設計の枠組における最新開発であり、年間</p>	<p>This project comprises 13 wind turbines developed by GE, each with an electricity generation capacity of 3.8MW.</p> <p>Those turbines represent the latest development in GE's wind turbine platform, increasing both</p>

発電量と運用の柔軟性の両方を向上させます。

annual energy production and flexibility in operation.

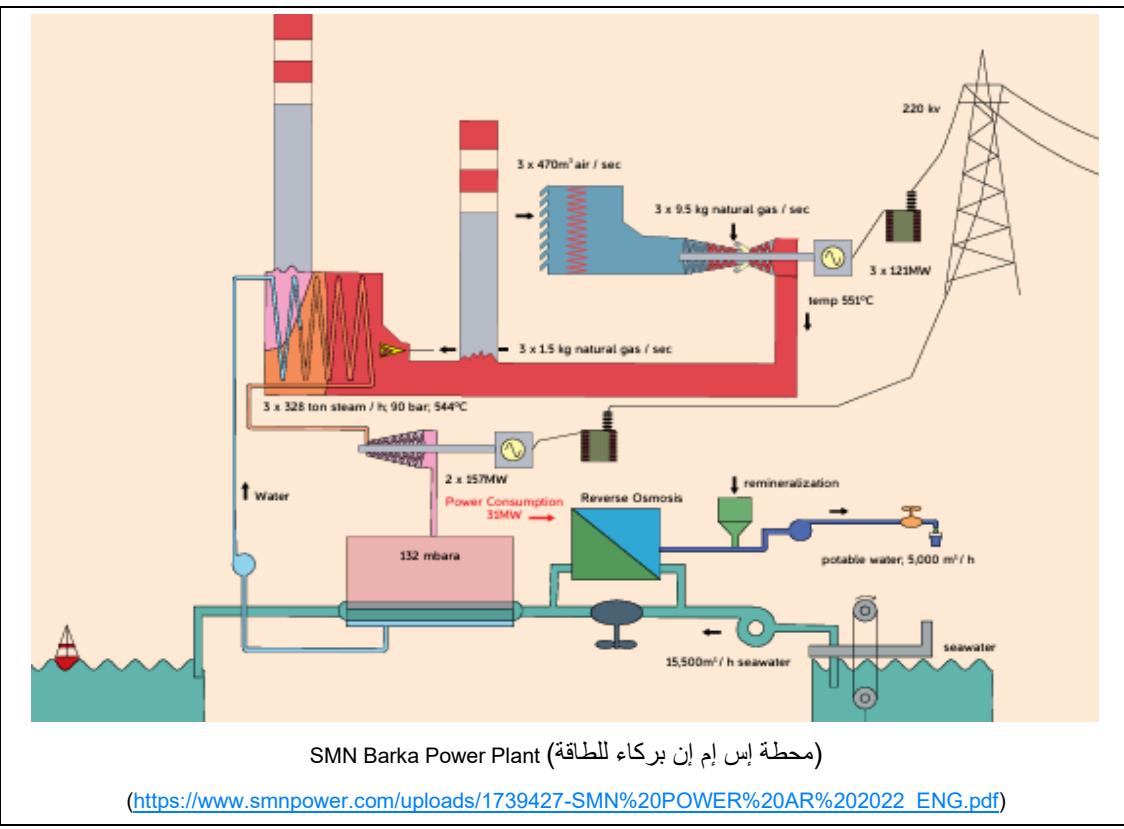
7.4 参考資料(Reference)

Dhofar Wind Power Project

(https://masdar.ae/-/media/corporate/projects/downloads/dhofar-wind-power/dhofar-wind-power-project_eng.pdf)

Masdar Dhofar Wind Project

(<https://masdar.ae/en/renewables/our-projects/dhofar-wind-project>)


TSK Dhofar 50 MW Wind Farm

(<https://www.grupotsk.com/en/project/dhofar-50-mw-wind-farm/>)

**8. SMN バルカ発電所
(716 MW、ガス)**

**8. SMN Barka Power Plant
(716 MW, Gas)**

8.1 概要	8.1 Over View
SMN バルカーは、バルカーに位置する IWPP (統合水・発電・水力発電) プラントです。敷地はオマーン国マスカットの北西約 50km に位置しています。	SMN Barka is an IWPP plant situated at Barka. The site is approximately 50 km northwest of Muscat, Oman.
この施設は 2009 年 11 月 15 日に完全商業運転を開始し、15 年間の PWPA (電力および飲料水供給契約) を開始しました。これにより、オマーン電力・水調達会社(OPWP)への電力および飲料水供給能力と生産量の販売が保証されています。	This facility entered into full commercial operation on 15 November 2009 and commenced the fifteen-year Power and Water Purchase Agreement (PWPA), guaranteeing the sale of its electricity and potable water capacity and production to Oman Power and Water Procurement (OPWP).
バルカ-II / バルカーフェーズ 2 とも呼ばれるこの施設の設計定格出力は、複合サイクルで 673.5MW、オープンサイクルで 363MW です。造水能力は約 26.4MIGD (120,000m³/日) です。	Also popularly known as Barka II / Barka Phase 2, the design net rated power output of the facility in a combined cycle mode is 673.5 MW and 363 MW in open cycle. The water production capacity is about 26.4 MIGD or 120,000 m³/day.

(Open Cycle (オープンサイクル) は、単純サイクル (Simple Cycle) とも呼ばれる発電方式で、廃熱を回収せずにガスタービンのみで発電を行う運転モードです。)	(Open Cycle, also known as Simple Cycle, is a power generation method in which only the gas turbine is used for power generation without recovering waste heat.)
この発電所は、エネルギー鉱物省(MEM)が所有するガス輸送基盤、オマーン上下水道サービス会社(OWWSC)が所有・運営する既存の送水システム、そして最終的にはオマーン送電会社が所有する 220kV の主要相互接続送電システムに接続されています。	This plant is connected to the gas transmission infrastructure owned by Ministry of Energy and Minerals (MEM), to the existing water transmission system owned and operated by Oman Water and Waste Water Services Co. (OWWSC) and finally to the main interconnected transmission system at 220 kV which is owned by Oman Electricity Transmission Company .
8.2 主要な設備	8.2 Main Facilities
この発電所は、V 94.2 Rev 6 二元燃料燃焼タービン 3 基 (シーメンス設計、イタリアのアンサルド・エネルギア社製)、補助燃料燃焼排熱回収ボイラー 3 基、シーメンス製復水蒸気タービン 2 基、そして発電所の運転に必要な補助機器で構成されています。	This power plant comprises of three V 94.2 Rev 6 dual fuel combustion turbines (Siemens design manufactured by Ansaldo Energia, Italy), three supplementary fuel fired heat recovery steam generators and two Siemens condensing steam turbines, along with ancillary equipment required for operation of the power plant.
これらが 1 つの複合サイクル発電ブロックを形成しています。この構成により、どのボイラーからの高圧蒸気と低圧蒸気もどちらの蒸気タービンにも供給できるため、柔軟な運用が可能になります。	They form one combined cycle power block. This arrangement allows for operational flexibility as high and low pressure steam from any boiler can be supplied to either steam turbine.
発電所は天然ガスを主燃料とし、燃料油を予備燃料として稼働しています。	This power plant operates on natural gas as primary fuel with fuel oil as back-up.
SMN バルカー発電所は、少なくとも 2 基のガスタービンに接続して発電所を起動できるディーゼル発電機による無外部電源起動に対応しています。	SMN Barka Plant is designed for black start operation by means of diesel generators which are capable of starting the plant via connections to at least two gas turbines.
発電所の補助電力は、発電所内の電気系統から供給され、系統からのバックアップも受けています。	The auxiliary power for the Plant is derived from the Plant's internal electrical system with back up from the grid.
8.3 廃熱利用の蒸気タービン発電	8.3 Waste Heat Recovery Steam Turbine Power Generation

<p>個々の V94.2 ガスタービンから排出される高温の排ガスは、自然循環式の排熱回収ボイラーに直接流入し、85bar の高圧蒸気と 7bar の低圧蒸気の 2 つの圧力レベルで蒸気を生成します。各排熱回収ボイラーからの高圧蒸気は共通のヘッダーで合流し、低圧蒸気と同様に 2 基の蒸気タービンのいずれかに送られます。</p>	<p>Individual V94.2 gas turbines hot exhaust gases directly flow into naturally circulated heat recovery steam generators, generating steam at two pressure levels: high pressure steam at 85 bar and low pressure steam at 7 bar. The high pressure steam from each of the heat recovery steam generators is combined in a common header and passes to one of the two steam turbines as does the low pressure steam.</p>
<p>この設備にはバイパススタックが備えられており、ボイラーまたは蒸気タービンが故障した場合でも、各燃焼タービンをオープンサイクルで運転できます。また、蒸気タービンの凝縮器に直接蒸気を排出することも可能です。</p>	<p>This facility is equipped with bypass stacks allowing operation of each combustion turbine in open cycle if a boiler or steam turbine failure occurs and steam dumping direct to the steam turbine condensers is also provided.</p>
<p>8.4 造水のための淡水化</p>	<p>8.4 Desalination for water production</p>
<p>造水のための淡水化には、契約処理能力 26.4MIGD (5,000m³/時の造水能力) の海水逆浸透淡水化プラントがあります。</p>	<p>involves a sea water reverse osmosis desalination plant with a contracted capacity of 26.4 MIGD or 5,000 m³/hour of water.</p>
<p>この逆浸透システムは、第一パスに 14 列、第二パスに 7 列で構成されています。</p> <p>溶媒の移動を促進して膜の両側の濃度を均一にする「自然」浸透とは異なり、逆浸透は高圧の海水を膜に通します。この膜は懸濁物質をほとんど透過しません。</p> <p>最終的に、片側には純水が、もう片側には高濃度の塩水が残ります。</p>	<p>This reverse osmosis system comprises of 14 trains in the first pass and 7 trains in the second pass.</p> <p>Unlike “natural” osmosis, which facilitates solvent migration so that concentrations are even on both sides of a membrane, reverse osmosis involves forcing seawater at high pressure through a membrane that is almost impervious to suspended minerals.</p> <p>In the end pure water is left on one side and highly concentrated brine on the other.</p>
<p>逆浸透により、SMN Barka は、発電設備が稼働していない場合でも、電力網からの電力を使用して淡水化水を生産できる柔軟性を特定のケースで得ることができます。</p>	<p>Reverse osmosis provides SMN Barka the flexibility, in certain cases, to produce desalinated water even when the power production is not operational, using power from the electricity grid.</p>
<p>8.5 運転・保守業務</p>	<p>8.5 operations and maintenance activities</p>

<p>機器の操作、試験、保守、修理に必要な設備（制御室、実験室、倉庫、作業場など）は、敷地内で利用可能です。</p>	<p>The equipment and facilities required for the operation, testing, maintenance and repair of the equipment (for example control room, laboratory, stores, workshop, etc.) are available at site.</p>
<p>SMN Barka は、発電所のすべての運転・保守業務（O&M）を Suez Tractebel Operations and Maintenance Oman (STOMO) に委託しています。</p>	<p>SMN Barka has contracted all operations and maintenance activities ('O&M') of the power station to Suez Tractebel Operations and Maintenance Oman ('STOMO').</p>

8.6 参考資料(Reference)

8.6 参考資料(Reference)

SMN Barka Plant

(<https://smnpower.com/barka-plant.php>)

Annual Report 2022 of SMIN Power Holding SAOG

(https://www.smnpower.com/uploads/1739427-SMN%20POWER%20AR%202022_ENG.pdf)